Kinetic modulation of Kv4-mediated A-current by arachidonic acid is dependent on potassium channel interacting proteins.

نویسندگان

  • M H Holmqvist
  • J Cao
  • M H Knoppers
  • M E Jurman
  • P S Distefano
  • K J Rhodes
  • Y Xie
  • W F An
چکیده

The Kv4 subfamily of voltage-gated potassium channels is responsible for the transient A-type potassium current that operates at subthreshold membrane potentials to control membrane excitability. Arachidonic acid was shown recently to modulate both the peak amplitude and kinetics of the hippocampal A-current. However, in Xenopus oocytes, arachidonic acid only inhibited the peak amplitude of Kv4 current without modifying its kinetics. These results suggest the existence of Kv4 auxiliary subunit(s) in native cells. We report here a K-channel interacting protein (KChIP)-dependent kinetic modulation of Kv4.2 current in Chinese hamster ovary cells and Kv4.2 and Kv4.3 currents in Xenopus oocytes by arachidonic acid at physiological concentrations. This concentration-dependent effect of arachidonic acid resembled that observed in cerebellar granule neurons and was fully reversible. Other fatty acids, including a nonhydrolyzable inhibitor of both lipooxygenase and cyclooxygenase, 5,8,11,14-eicosatetraynoic acid (ETYA), also mimicked arachidonic acid in modulating Kv4.3 and Kv4.3/KChIP1 currents. Compared with another transient potassium current formed by Kv1.1/Kvbeta1, Kv4.3/KChIP1 current was much more sensitive to arachidonic acid. Association between KChIP1 and Kv4.2 or Kv4.3 was not altered in the presence of 10 microm ETYA as measured by immunoprecipitation and association-dependent growth in yeast. Our data suggest that the KChIP proteins represent a molecular entity for the observed difference between arachidonic acid effects on A-current kinetics in heterologous cells and in native cells and are consistent with the notion that KChIP proteins modulate the subthreshold A-current in neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating.

Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison wi...

متن کامل

Homology model and targeted mutagenesis identify critical residues for arachidonic acid inhibition of Kv4 channels

Polyunsaturated fatty acids such as arachidonic acid (AA) exhibit inhibitory modulation of Kv4 potassium channels. Molecular docking approaches using a Kv4.2 homology model predicted a membrane-embedded binding pocket for AA comprised of the S4-S5 linker on one subunit and several hydrophobic residues within S3, S5 and S6 from an adjacent subunit. The pocket is conserved among Kv4 channels. We ...

متن کامل

Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain.

The Kv4 A-type potassium currents contribute to controlling the frequency of slow repetitive firing and back-propagation of action potentials in neurons and shape the action potential in heart. Kv4 currents exhibit rapid activation and inactivation and are specifically modulated by K-channel interacting proteins (KChIPs). Here we report the discovery and functional characterization of a modular...

متن کامل

Structure and function of Kv4-family transient potassium channels.

Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these chan...

متن کامل

Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid.

We have found that transient A-type currents expressed in Xenopus oocytes from members of the Kv4 family are suppressed by arachidonic acid. Currents from members of the Kv1, Kv2, and Kv3 families showed little or no inhibition by fatty acids in this expression system, although Shaker currents showed a modest increase in peak amplitude. The inhibition of Kv4 channels was not prevented by cyclo-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2001